

Iluminação Cenográfica Capítulo 2 – Fontes de Luz e Contrastes

Coordenador do curso Prof. Dr. Francisco Isidro Masseto

Autor Helber Marcondes da Silva

PACC – Programa Anual de Capacitação Continuada

Curso: Produção de Vídeo. de Massetto, F. I., Dotta, S., Vargas, T. Moralez, R., Uehara, M, Dias, M.R.S, Rodrigues, E. Sampaio, S. Marcondes, H. é licenciado sob uma <u>Licença Creative</u> Commons Atribuição-NãoComercial 3.0 Não-Adaptada.
Permissões além do escopo dessa licença podem estar disponíveis em http://uab.ufabc.edu.br.

Protocolo

Não existe a necessidade de termos um kit de iluminação profissional, desde que o vídeo seja gravado com uma iluminação adequada. Isso é um princípio a ser sempre considerado, seja para uma simples fotografia caseira, seja para uma superprodução hollywoodiana. E é essencial que, na criação do seu vídeo, as imagens passem uma sensação de profundidade e textura.

Mas de que forma devemos posicionar uma lâmpada? E em que posição devo colocar a câmera de forma a aproveitar melhor a iluminação disponível? Como controlo a quantidade de sombras presentes em determinada cena?

Para entendermos melhor o que significa ter uma "iluminação adequada", vamos abordar um protocolo de iluminação bastante básico, mas que ainda hoje serve de base para qualquer montagem fotográfica e cinematográfica: o *Three Point Lighting*.

Three Point Lighting

Um dos protocolos que servem de padrão no mundo da fotografia é denominado Three Point Lighting. Esse protocolo consiste em posicionar as fontes de luz em três posições diferentes, de forma a refletir no objeto/pessoa a ser fotogrado/filmado, controlando o excesso de sombras produzidas pela iluminação direta (ou eliminando completamente regiões de sombra). Isso permite que destaquemos a pessoa/objeto em relação ao restante do ambiente, por meio de uma ilusão de profundidade.

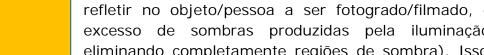


Figura 3 - Exemplo de Three-Point Lighting

Para compreendermos melhor como isso funciona, vamos analisar cada um dos tipos de fontes de luz.

Fontes de Luz

Os tipos de fontes de luz são definidos de acordo com sua função. Dessa forma, temos a <u>luz principal</u>, a <u>luz secundária</u>, <u>luz de enchimento</u> e a <u>contra-luz</u>.

Muitos trabalhos podem ser feitos apenas com a luz principal sem qualquer problema. Outros, mais sofisticados, precisam de mais fontes.

Cada fonte de luz tem uma função específica, e para saber diferenciar cada uma delas é preciso conhecer suas características:

1 - Luz Principal, Ou Key Light

Fornece a luz básica da cena.

Ela incide sobre os objetos entre 40° e 60° na vertical, e fica aproximadamente a 45° da posição da câmera.

Figura 4 – Key Light "Dura"

2 - Luz Secundária

Reforça a luz Principal. Muitas vezes podemos usar rebatedores que irão refletir a luz principal, direcionando-a para o objeto. Esses rebatedores podem ser placas de isopor, folhas de papel branco ou mesmo painéis especialmente construídos para esse fim.

Esse tipo de iluminação ajuda a amenizar sombras e contrastes decorrentes da luz direta, sendo por esse motivo totalmente dependente da Luz Principal. Muitas vezes pode ser substituída pela Luz de Enchimento.

Figura 5 – Rebatedor modelo Prata/Ouro

3 - Luz De Enchimento, Ou Fill Light

É uma luz geral que permeia todo o ambiente ou parte dele, mas que serve apenas para manter a estabilidade dos contrastes nos assuntos que estão enquadrados. Ela atenua as sombras mais intensas sem, no entanto, eliminá-las totalmente. É usada conjuntamente com a Luz Principal em ambientes mais neutros e sem contrastes excessivos. Normalmente a sua posição é próxima à câmera.



Figura 6 – Luz de Enchimento

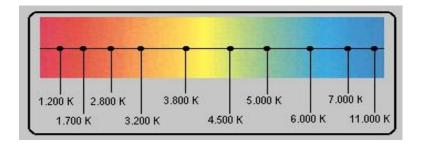
4 - Contra Luz, Ou Backlight

Esse tipo de iluminação destaca os objetos ou atores principais em relação ao fundo do cenário, evitando assim o "achatamento" da imagem. Ela fica por trás dos atores em um ângulo de 50° em relação ao solo.

Figura 7 – Exemplos de Contra-Luz de "cabelo" e Contra-Luz de "fundo"

UNIVERSIDADE ABERTA DO BRASIL

Pelas descrições anteriores, nota-se que todas essas fontes de iluminação possuem uma relação com a posição da câmera, direta ou indiretamente. Esse é um requisito essencial para que cheguemos na imagem desejada, já que a principal função dessas luzes é refletir no objeto e sensibilizar a câmera, marcando a imagem.



Temperatura das Cores

8

Figura 8 – Escala Kelvin de Temperatura de Cor

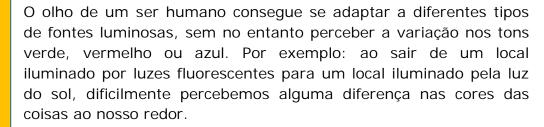
Temperatura da Cor é a grandeza que define a aparência de cor da luz, sendo que quanto mais alta a temperatura de cor, mais branca é a cor da luz. Para medi-la, usamos como unidade o Kelvin (K).

A escala Kelvin, além de utilizada na representação de cores, é uma das escalas utilizadas para medir temperaturas. Foi idealizada por Willian Thomson, cujo nome como nobre inglês era Lord Kelvin. Em seus estudos de termodinâmica ele descobriu que à temperatura de mais ou menos 700 graus Celsius (ou 973,3 K) um corpo negro hipotético começaria a emitir luz, ficando a tonalidade vermelho escuro. Em seguida, à medida que fosse mais aquecido, mais as tonalidades iriam variando, até atingir o tom azul. Posteriormente, esta associação entre cor e temperatura foi validada através de experiências feitas por cientistas.

A luz quente é que tem aparência de cor amarelada (normalmente a que vemos em lâmpadas comuns de filamento) e é uma temperatura de cor baixa: menor que 3000 K. A luz fria, ao contrário, tem aparência azul — violeta (obtida por meio de lâmpadas fluorescentes), com temperatura de cor elevada: 6000 K ou mais.

A luz branca natural é aquela emitida pelo sol em céu aberto ao meio dia, cuja temperatura de cor é 5800 K. Na próxima página, apresentamos uma tabela mostrando variadas fontes de luz e suas temperaturas associadas:

PACC



Temperatura	Fonte de Luz
25.000 K	Céu de dia no Pólo Norte
13.000 K	Céu ligeiramente encoberto
9.000 a 12.000 K	Céu azul aberto
6.500 a 7.500 K	Céu encoberto
6.500 K	Lâmpada fluorescente do tipo "luz do dia"
6.000 K	Lâmpada de mercúrio
5.500 a 6.000 K	Luz do Sol durante a maior parte do dia
5.500 a 5.600 K	Flash eletrônico
5.000 a 5.500 K	Luz do Sol ao amanhecer ou entardecer
5.000 K	Lâmpada de xenônio (projetores atuais de cinema)
4.500 K	Arco voltaico (projetores antigos de cinema)
4.500 K	Lâmpada fluorescente do tipo "branca fria"
4.100 K	Luz do luar em noite de Lua Cheia
4.000 K	Lâmpada de Flash do tipo bulbo
3.500 K	Lâmpada fluorescente do tipo "Branca Quente"
3.400	Lâmpada de estúdio photoflood tipo A
3.200 K	Lâmpada de estúdio photoflood tipo B (halogena) utilizada em vídeo
3.200 K	Nascer / Por do Sol
3.000 K	Lâmpada incandescente comum (tungstênio) de 200 W
2.680 K	Lâmpada incandescente comum (tungstênio) de 40 W
2.000 K	Lâmpada de Vapor de Sódio (Iluminação Pública)
1.700 K	Candeeiro / Luz de vela
1.200 K	Luz do Fogo

Regulagem por meio de Equipamentos Digitais

Entretanto, essa mudança de intensidade das cores é mais facilmente perceptível no cinema, na fotografia e no vídeo. Por esse motivo, e para avaliarmos corretamente a quantidade de cores básicas de uma fonte de luz (verde, vermelho ou azul) algumas câmeras de vídeo possuem um mecanismo para que consigamos regular a temperatura da cor. Essa regulagem é uma medida que indica desde a ausência de cor (predominância de preto) até a cor branca absoluta. Normalmente esse ajuste é denominado *White Balance* (balanço do branco).

Uma superfície branca consegue refletir, a luz proveniente de qualquer fonte de luz sem distorções. E quando a cor branca é reproduzida com fidelidade, as outras cores também serão reproduzidas sem tons dominantes de azul, verde ou vermelho. Dessa forma, o *White Balance* fará um ajuste eletrônico da cor branca para a temperatura da cor de qualquer fonte luminosa.

Contrastes

"Nada deve ser acidental. E, para que assim seja, o fotógrafo deve ter um método que responda a todas as situações e permita todas as medições.

Saber de que direção vem a luz e para que ela serve é o mínimo que se exige de um fotógrafo" (MOURA, 1999).

Os contrastes são um dos fatores que influenciam diretamente na qualidade final do seu vídeo. É essencial evitarmos situações de muita luz e pouca luz na mesma cena. Em casos assim, se usarmos o controle automático de exposição, veremos que gravamos grandes silhuetas de coisas ou pessoas como se estivessem em frente a uma janela, com muita claridade ao fundo. Deixar a luz incidir diretamente sobre o rosto de uma pessoa também é desaconselhável, pois produz uma imagem tensa, sofrida, e com sombras se destacando involuntariamente.

E qual seria a maneira mais simples de resolvermos situações como essas?

Simplesmente mudando a pessoa ou objeto de lugar, ou mesmo alterando o ângulo e o posicionamento da câmera. Apesar de ser algo simples, dependendo do local ou da situação da gravação do vídeo, nem sempre isso é possível. Por esse motivo, devemos fazer o uso de recursos adicionais, como telas difusoras, rebatedores e sabendo explorar corretamente as fontes de luz que temos disponíveis.

Low Key, High Key e Gradual Tonalidade

São três efeitos que podem ser obtidos variando o tipo de iluminação para obter determinados efeitos de contraste. São muito utilizados em fotografia, mas também podem der usados em seus vídeos.

Para obtermos o efeito *low key*, a iluminação deve ser composta por luzes que provoquem sombras nítidas, e assim o contraste será mais acentuado.

O efeito *high key* dá a impressão de iluminação direta, porém é obtido utilizando luz suave e difusa para uma aparência brilhante, gerando poucas sombras.

Já a *gradual tonalidade* é o uso de luz suave para criar sombras difusas (espalhadas).

